近红外二区(NIR-II)荧光分子是一类在波长范围为1000-1700nm的近红外二区具有显著荧光特性的分子。这一光谱区域的光在生物组织中具有较小的散射和较大的穿透能力,因此,近红外二区荧光分子在生物成像、医学诊断等领域具有广泛的应用前景。 |
多壁碳纳米管由多层石墨烯片层卷曲而成,层与层之间保持固定的距离,形成同轴圆管结构。其管径通常在5-30nm之间,长度则可从几微米到几十微米不等,具体尺寸取决于制备方法和条件。工业级多壁碳纳米管的纯度可达到95%或更高,确保了其在应用中的稳定 |
上转换纳米颗粒(Upconversion Nanoparticles,UCNPs)是一种能够将低能量光转化为高能量光的纳米材料,由无机纳米晶掺杂稀土离子构成,具有独特的上转换发光性质。稀土上转换发光是基于镧系稀土离子4f电子跃迁的过程,目前 |
MAX相是一种三元层状陶瓷材料,其中M为过渡族金属元素,A主要为第三主族和第四主族元素,X为碳或氮。这种材料的晶体单元排布为六方结构,空间点群为P63/mmc,其中M原子层和A原子层交替排列,形成类似于密堆积六方的层状结构,而X原子则填充于 |
氧化镍作为一种重要的无机功能材料,广泛应用于冶金、电子、化学等工业,并且具有优良的热敏性能。纳米级氧化镍因尺寸小、比表面积大、化学活性高,在热敏元件、功能陶瓷、催化剂、电极 材料、磁性材料、器皿元件和电子元件等方面得到更广泛的应用。技术参数 |
WTe2是一种ii型Weyl半金属,载流子密度低至1E10 cm-2范围,被认为是材料领域的黄金标准。它们在静水压力下也表现出半金属到超导的转变。与其他来源不同,我们的生长涉及高度复杂的浮动区技术,这使我们能够在生长过程中有意地去除缺陷,以 |
石墨相氮化碳(g-C3N4)是一种由碳原子和氮原子共同构成的新型材料,其晶体结构与二维石墨的层状结构类似,但具有更高的稳定性和独特的物理、化学性质。石墨相氮化碳是氮化碳同素异形体中最稳定的一种,具有超高的强度和化学惰性,可弥补金刚石热稳定差 |
石墨相氮化碳(g-C3N4)是一种由碳原子和氮原子共同构成的新型材料,其晶体结构与二维石墨的层状结构类似,但具有更高的稳定性和独特的物理、化学性质。石墨相氮化碳是氮化碳同素异形体中最稳定的一种,具有超高的强度和化学惰性,可弥补金刚石热稳定差 |
MoS2是一种典型的过渡金属二硫化物,具有类似石墨烯的二维层状结构。MoS2共有1T型、2H型和3R型3种晶体结构,其中1T型和3R型为亚稳相,2H型为稳定相,宏观MoS2材料多以2H型存在,具有独特的三明治结构,属于六方晶系结构。MoS2 |
石墨烯量子点(Graphene Quantum Dots, GQDs)是一种新型的零维纳米材料,由石墨烯晶格和sp²键合碳核组成,具有丰富的边缘和宽的表面积。其横向尺寸通常小于30 nm,片层层数在10层以下。由于其独特的结构和性 |
近红外二区(NIR-II,1000-1700nm)AIE(聚集诱导发光)荧光纳米颗粒是一种在生物医学成像领域具有重要应用前景的纳米材料。近红外二区AIE荧光纳米颗粒是指具有AIE性质的荧光分子,在聚集状态下能够发出更强的荧光,并且其发射波长 |
一维银纳米线有特殊的结构及形貌,具有特殊的光、电性能和化学性能,吸引了众多研究人员的兴趣。银纳米线具有表面等离子体效应及优异的导电、导热性能等,在电子器件、化学催化剂、机械传感和高端检测设备等领域均表现出极大的市场应用前景。比如将其加入到导 |
单晶石墨烯是指具有单晶体结构特征的石墨烯材料。石墨烯本身是由单层碳原子构成的二维材料,而单晶体的石墨烯则强调其原子排列的高度有序性,无缺陷,这种结构赋予了它更加优异的物理性质。单晶石墨烯的制备技术多种多样,主要包括以下几种方法: 气相沉积法 |
名称:Py-DHBD-COF共价有机框架(Covalent Organic Frameworks, COFs)材料的概念最早在2005年由Yaghi等人提出,旨在开发一类具有高度有序结构和特定功能的新型多孔材料。COF是一类由轻质元素(如 |
碳纳米管也叫巴基管,单壁碳纳米管可以看作是由单层石墨六边形网格平面沿手性 矢量卷绕而成的无缝空心圆管,两端一般由碳原子的五边形封顶 。因此碳纳米管中 的碳原子是以 sp2 杂化为主,一旦六边形网络结构形成空间拓扑结构时,可形成一定 的 sp |